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Abstract: - A four node degenerated shell element with drilling degree of freedom is presented in this paper. 

The problem of zero stiffness that appears with using the drilling degree of freedom and causes singularity in the 

structure stiffness matrix is solved by employing, one of the recommended remedies. That is, adding a fictitious 

rotational stiffness using a penalty parameter (torsional constant) to control the solution to insure good element 

performance. Examples are presented including comparisons of torsional constant with the maximum 

displacements by using different mesh sizes, which results on selecting a value equal to one for the torsional 

constant is suitable value used to insure rapid convergence to true solution.   
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I. INTRODUCTION 
Drilling or in-plane rotational, degrees of freedom have been introduced with various meanings and 

purposes to model displacements in planar finite elements. The need for membrane elements with drilling 

degrees of freedom arises in many practical engineering problems such as in-filled frames and folded plates. 

This special practice is frequently used in the analysis of thin shells by the finite element method. It is, basically, 

to allow correct modeling of the junction between angles of shell elements and to simplify the modeling of 

connections between plates, shells and beams, as well as the treatment of the junctions of the shells and box 

girders. Several work was initiated since 1964 for developing membrane finite elements with drilling degrees of 

freedom (Djermane (2006) [1] and Allman (1988) [2]). The assembly of the stiffness matrices of membrane and 

bending components at each node will result in a zero value on the diagonal corresponding to the drilling degree 

of freedom since this is not considered in the membrane or bending element as stated by Zeinkiewicz and Taylor 
(2000) [3], Alvin et al. (1992) [4], Felippa and Militello (1992) [5] and Felippa and Scot (1992) [6]. This zero 

stiffness for the drilling degree of freedom causes singularity in the structure stiffness matrix when all the 

elements are coplanar and there is no coupling between the membrane and bending stiffness of the element. 

Several methods have been suggested by various authors for removing the singularity in the stiffness 

matrix based on variational principles such as those formulated by Gruttmann et al. (1992) [7]. These elements 

are stable and perform very well in non-linear problems. Knight (1997) [8] suggested that a very small value be 

specified for the stiffness of the drilling degrees of freedom so that the contribution to the strain energy equation 

from this term will be zero. Bathe and Ho (1981) [9] approximated the stiffness for drilling degrees of freedom 

by using a small approximate value. Batoz and Dhatt (1972) [10] presented the formulation of a triangular shell 

element named KLI element with 15 degrees of freedom and a quadrilateral shell element named KQT element 

with 20 degrees of freedom using the discrete Kirchoff formulation of plate bending element. The KQT element 
was developed by combining four triangular elements with the mid-nodes on the sides. The KQT element was 

found to be more effective among the two. Bathe and Ho (1981) [9] developed a flat shell triangular element by 

combining the constant strain triangle (CST) element for membrane stiffness and the plate bending element 

using the Mindlin theory of plates for the bending stiffness. They introduced a fictitious stiffness for the drilling 

degrees of freedom in the development of the element stiffness matrix for the triangular flat shell element. This 

element was found to be very effective for the analysis of shell structures. McNeal (1978) [11] developed the 

quadrilateral shell element QUAD4, by considering two in-plane displacements that represent membrane 

properties and one out-of-plane displacement and two rotations, which represent the bending properties. He 

included modifications in terms of a reduced order integration scheme for shear terms. He also included 

curvature and transverse shear flexibility to deal with the deficiency in the bending strain energy. The first 

successful triangles with drilling freedoms were presented by Allman in (1984) [12] and Bergan and Felippa in 

(1985) [13]. A degenerated shell element with drilling degrees of freedom was developed recently by Djermane 
et al. (2006) [1] for application in linear and nonlinear analysis of thin shell structures for isotropic or 

anisotropic materials with using the assumed natural strains technique to alleviate locking phenomenon. The 
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same authors extended the formulation  by using the same techniques to study the dynamic responses of thick 

and thin nonlinear shells (Djermane et al. (2007) [14]). 

Thus, the simplest method adopted to remove the rotational singularity is to add a fictitious rotational 
stiffness. However, Yang (2000) [15] suggested that, although the method solves the problem of singularity it 

creates a convergence problem that sometimes leads to poor results. A number of alternatives have been 

proposed by Adam and Mohamed (2013) [16] for avoiding the presence of this singular behavior. One of the 

remedies is to utilize the original penalty approach of Kanok–Kanukulchai (1979) [17], by introducing a 

constraint equation which “links” the drilling rotations in the fiber coordinate system to the in-plane twisting 

mode of the mid-surface. An additional energy functional can be then defined in the standard manner, to allow 

the application of the penalty method giving the preceding definition of the drilling degree of freedom with the 

fictitious torsional coefficient serving as a penalty parameter. Numerical experiments showed that the element 

performance is very sensitive to penalty parameter value as stated by Guttal and Fish (1999)  [18]. 

In this paper a bilinear degenerated four nodes shell elements is developed. Five numerical examples 

are used to examine the element performance with respect to sensitivity to the value of penalty parameter and to 
evaluate the suitable value. 

 

II. DEGENERATED FOUR NODES SHELL ELEMENT FORMULATION 
This element was presented by Kanock-Nukulchai (1979) [17] under the following assumptions: 

1. Normal to the mid-surface remains straight after deformation. 

2. Stresses normal to the mid-surface are zero. 

 

2.1 Geometric shape: 

A four nodes element is obtained by degenerating the eight nodes solid element as shown in Fig. (2.1). 
 

 
Fig. (2.1): Four nodes shell element degenerated from eight nodes solid element 

 

 
Fig. (2.2): Four nodes shell element 

 

The midsurface shown in Fig. (2.2) is defined by natural coordinates (r, s, t). The displacements u, v 

and w are the displacements in global Cartesian coordinates x, y and z respectively. θx, θy, and θz are rotations 
about the x, y and z respectively. The rotations αx, αy and αz are about local coordinates x', y', and z' respectively.  
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The shape functions to describe the midsurface in terms of natural coordinates are: 

Ni (r,s) = ¼(1 + ri r) (1 + si s)                                    (2.1) 

The thickness at each node hi is computed in the direction normal to the midsurface. 

 

 
Fig.(2.3): Node director 

 

From Fig.(2.3) vector V3i is called node director and defined by: 
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The coordinates of any point in the element can be derived from the 8-nodes solid element to 4-nodes element 

as: 
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Since )1(
2

1
t is the part of shape function in 8-nodes solid element in direction of the thickness. 

and xi, yi and zi are the global coordinates of the midpoint i 

 

2.2 Displacement field: 

The displacement variation in the element can be expressed as: 
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Where ui, vi and wi are the displacements at mid point i along global direction, and 
***, iii wandvu  are 

the relative nodal displacements along global direction produced by rotation of the normal at node i and can be 
expressed in terms of rotations θxi, θyi, and θzi at each node i about global axes. Using the assumption that 

straight normal to the midsurface remains straight after deformation, the displacements produced by the 

rotations αxi , αyi can be found as shown in Fig.(2.4) as: 
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where 
''' , iii wandvu  are the displacements components along local axes at node i. To transform these 

displacements to global axes, transformation matrix T (Eqn.(2.6)) can be used.  

 

 
Fig. (2.4): Rotation of normal due to αx and αy 
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where l1, m1 and n1 (the direction cosines) are components of unit vector v1, and l2, m2 and n2 are components of 
unit vector v2 , and l3, m3 and n3 are components of unit vector v3, then 


















*

*

*

i

i

i

w

v

u

Ti 

















0

'

'

i

i

v

u

 

           = 






























xi

yi

ii

ii

ii

i

nn

mm

ll

h
t





21

21

21

2
                                   (2.7) 

αxi and αyi are expressed in terms of global rotations θxi, θyi, and θzi by using transformation matrix Ti as: 
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Substituting Eqn.(2.8) in Eqn.(2.7) gives: 


















*

*

*

i

i

i

w

v

u







































zi

yi

xi

ii

ii

ii

i

lm

ln

mn

h
t







0

0

0

2
33

33

33

                                  (2.9) 

And Substituting this in Eqn.(2.4), gives: 
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2.3 Strain-displacement relation: 
By assuming that the strain normal to midsurface εz' = 0, the strains components along the local axes are given 

by: 
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By splitting Eqn. (2.11) to two components, membrane component and shear component it can be rewritten as: 
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The matrices Bm1, Bm2, Bs1 and Bs2 can be derived by using Eqn. (2.14). 
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Where Tu is the transformation matrix needed to transform the derivatives of Eqn. (2.14). 

 

2.4 Stress-strain relation: 
The stress-strain relation can be stated after imposing σz' = 0 as: 
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where  = 5/6 is a factor that accounts for the thickness-direction variation of transverse shear strain, E' is the 

modulus of elasticity and  is Poisson's ratio. 
The constitutive matrix in Eqn. (2.15) is split into Cm and Cs as follows: 
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2.5 Element stiffness matrix: 

The stiffness matrix can be split into two matrices, membrane and bending effects and transverse shear effects 
and can be written as: 
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Integrating Eqn. (2.17)a and Eqn. (2.17)b directly across the thickness with respect to t, gives: 
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2.6 Torsional stiffness matrix 

In a degenerated shell, the rotation of the normal and the mid-surface displacement field are independent. The 

idea then is to derive an additional constraint between the torsional rotation of the normal, αz, and the rotation of 

the mid-surface, 
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Fig. (2.5) Torsional rotation of the normal and midsurface 

 

The derivation of the torsional rotation of the normal from that of the midsurface is assumed to have governing 

strain energy [4] and [17] as: 
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The matrix B3 can be written after extracting the vector of nodal displacements u from the relation 
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αt is a penalty parameter and must be determined to insure good convergence. 

 

III. NUMERICAL EXAMPLES 
To examine the effects of torsional constant (αt ) in the solution, a program was developed for the 

degenerated shell element formulation and  five numerical examples with different geometric shapes and 

different support conditions were employed using different values for αt ranging from 1E-5 to 1E+5, with 

different mesh sizes and the resulting maximum displacements were recorded. 

By plotting the displacements versus αt using these meshes for the five Examples, the effect of αt value, 

the rate of convergence and the suitable mesh size that gives a displacement value close to the exact value are 

determined. 

 

Example 1: Pinch Cylinder Shell:  

The thin circular cylindrical shell is subjected to equal and opposite point loads and the ends are 

restrained by rigid diaphragms as shown in Fig.(2.6) and for symmetry, only one octant of the cylindrical shell 

was modeled. the maximum displacements were plotted versus αt using (4x4, 8x8, 12x12, 16x16, 20x20) mesh 
size as shown in Fig. (2.7). 

 
Fig. (2.6) Pinched Cylinder Shell 
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Fig. (2.7) Tensional Constant versus Maximum Displacement with Different Mesh Size for Example 1 

 

Example 2: Scordelis-Lo roof: 

The shell is supported on rigid diaphragms at the curved edge and free at straight edges and is loaded 

by its own weight and for symmetry, only one quarter of the roof shown in Fig. (2.8) was analyzed using (4x4, 

8x8, 12x12, 16x16 and 20x20) meshes. The maximum displacements were plotted versus αt for the different 

mesh sizes as shown in Fig. (2.9). 

 
Fig. (2.8) Scordelis-Lo roof 

 

 
Fig. (2.9) Tensional Constant versus Maximum Displacement with Different Mesh Size for Example 2 

 

Example 3: Short Cantilever Beam under End Shear Load: 

A shear-loaded cantilever beam, as shown in Figure (2.10) was idealized using 4x2, 8x2, 16x4 and 32x8 element 

meshes. The maximum displacements were plotted versus αt for the different mesh sizes as shown in Fig. (2.11). 
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Fig. (2.10) Short Cantilever Beam 

 

 
Fig. (2.11) Tensional Constant versus Maximum Displacement with Different Mesh Size for Example 3 

 

Example 4: Folded plate simply supported on two opposite sides 

The folded plate is simply supported on two opposite sides and is loaded by uniformly distributed load 

along the ridge. For symmetry, only one quarter of the shell was analyzed using (4x4, 8x8, 12x12, 16x16 and 
20x20) meshes. The maximum displacements were plotted versus αt for the different mesh sizes as shown in Fig. 

(2.13). 

 

 
Fig. (2.12) Folded plate simply supported on two opposite sides 
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Fig. (2.13) Tensional Constant versus Maximum Displacement with Different Mesh Size for Example 4 

 

Example 5: Clamped Hyperbolic Paraboloid Shell 

The shell shown in Fig. (2.14) is the hyperbolic paraboloid shell and is clamped on four edges and 

subjected to a uniform normal pressure. For symmetry, only one quarter of the shell was modeled using (4x4, 

8x8, 12x12, 16x16 and 20x20) meshes. The maximum displacements were plotted versus αt for the different 

mesh sizes as shown in Fig. (2.15). 

 
 

 
Fig. (2.15) Tensional Constant versus Maximum Displacement with Different Mesh Size for Example 5 
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IV. DISCUSSION 
As can be seen from the plottings of the torsional constants versus maximum displacements  using 

different mesh sizes for the five examples (figures 2.7, 2.9, 2.11, 2.13 and 2.15), using a small value, from 1 to 

1E-5, for the torsional constant gives a high and constant value of maximum displacement which leads to rapid 

convergence. The displacement variation lines for the different meshes tend to be straight and parallel to the line 

of exact displacements starting from αt equal to one. For values of αt close to zero, while the displacements tend 

to close to the exact values, the values of rotations become very large instead of being close to zero which in 

turn affects the convergence of the solution. For larger values of torsional constant, greater  than  1 and up to 

1E+5, the value of maximum displacement decreases with increasing value of torsional constant which indicates 

poor convergence and results in wrong values of displacement. Thus, a value of 1 for the torsional constant is 

suitable for the degenerated four nodes shell finite element with six degrees of freedom and results in good 

convergence to the true solution. 
 

V. CONCLUSION 
This paper presents a formulation of the degenerated four nodes shell finite element with six degrees of 

freedom per node and drilling degree of freedom. A finite element program was developed and  five  examples 

were analyzed using the developed program. Solutions were obtained with different mesh sizes and variable 

torsional constant values in order to determine a suitable value for the torsional constant that can be used with 

torsional stiffness matrix. It can be concluded from the results obtained that:  

1- The developed degenerated four nodes element with drilling degree of freedom resolves the stiffness 

singularity problem, provided the suitable value of torsional constant is used.   
2- Values of torsional constants greater than one indicate poor convergence and lead to wrong results.   

3- Small values, less than one, of the torsional constants, while resulting in displacement values close to the 

exact with rapid convergence, result in large rotation values instead of being close to zero, which in turn 

affects the convergence of the solution.   

4- A torsional constant equal to one is the suitable value for good convergence to the true solution of results 

obtained using the four nodes degenerated shell element with drilling degree of freedom.   
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